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Geometric properties of Dirac fields in a Riemannian 
space-time: I 

C J Radford and A H Klotz 
Department of Applied Mathematics, University of Sydney, NSW 2006, Australia 

Received 30 October 1978 

Abstract. Dirac fields in a Riemannian space-time are calculated according to coincidence 
(type 11) or non-coincidence (type I) of two null directions. Type-I1 fields are then analysed 
in detail with the help of the Newman-Penrose (NP) formalism. Conditions on the 
associated energy-momentum tensors are obtained for the various subclasses of the type-I1 
fields. 

1. Introduction 

The geometric properties of Weyl-Einstein neutrino fields have been analysed in detail 
by Wainwright (1971). In this and a subsequent work we shall consider the cor- 
responding properties of Dirac and Dirac-Einstein fields in Riemannian space-time 
manifolds. The discussion falls naturally into two parts, since Dirac fields can be 
classified, as we shall find, according as two null directions of the field coincide or do not 
coincide. In the present article we shall confine ourselves to the first case only, which we 
shall call a Dirac field of type 11. 

It is necessary to distinguish between test solutions of the field equations and the full 
Dirac-Einstein system. In the former case it is assumed that the Riemannian space is 
given and we need to consider only the Dirac equation written in terms of it. In the 
second case we have to investigate both the gravitational equations of Einstein with the 
energy-momentum tensor, say, of an electromagnetic field and the Dirac equation. 

(1) 
where V, is the covariant differential operator, L = h/moc the Compton wavelength of 
a particle of rest mass mo and 

In a curved space-time, the latter can be written locally in the form 

y a V &  + (i /L)4 = 0 ( a  = 0, 1, 2,3)  

(summation over j = 0, 1 ,2 ,3 )  

where y’ are the usual, flat space-time, Dirac matrices and h& is an orthonormal 
tetrad. If the Dirac equation (1) is to apply globally (that is, throughout the manifold), 
global existence of orthonormal tetrads is required. It is known (Geroch 1968, 1970) 
that the existence of a global, orthonormal tetrad is equivalent to the existence of a 
spinor structure of the space. Hence we restrict ourselves to space-times which possess 
this structure. Our results depend on using spinor formalism and the above restriction 
provides a motivation for our attempt. It is only in this formalism (and, in particular, in 
its Newman-Penrose version) that the Dirac equation can be analysed conveniently. 
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2. Mathematical formalism and classification of Dirac fields 

It is well known (van der Waerden 1928, Penrose 1968) that when the y matrices of 
Dirac are represented by 

j = 0, 1 ,2 ,3 ,  
0 Y -  

U 
(3) 

where u'AA are the Pauli matrices (divided by A), the Dirac equation (1) splits into two 
2-spinor equations. The U matrices satisfy 

(4) 

( 5 )  

k A A  1 
U uAA=vki=d iag ( l , - l ,  -1,-1) 

and 
k 

ff AAukBB = CABCAB. 

For further details of the notational conventions and spinor calculus, see Pirani (1964) 
and Penrose (1960). Writing the Dirac bi-spinor t,b as 

* = (;;) I / ;  = (VA, Eg) 

equation (1) becomes 

v A A U A  + (i/JZL)CA = o 
vA"oA - (i/JZL)uA = o (7) 

where 
and U "AA = hP;.,uiAA 

v a  
vAA = uaAA 

The Dirac equations (7) can be derived (Hamilton and Das 1977, Hoyle and Narlikar 
1974) from the variational principle 

6 S = O  (8) 
where 

by varying U and v. Similarly, by varying u"AA or, equivalently, hpl,, we obtain an 
energy-momentum tensor 

T AABB . . - l  - S[uAVBBaA f UBvAAEB - EAVBduA - fiBVAAUB 

+ CAVBBVA + oBVAAvB - VAVBBCA - VBVAACB] (9) 
which is divergence-free by virtue of equations (7). We can verify also that the vectors 

(W A -A j "  = u a A A ( U A c A  + u A ~ A )  and S"=(TaAAU U 

are divergence-free. j "  is the Dirac probability current vector, which is always time-like 
or null. The complex vector sa is orthogonal to j" and is null. The real vectors 

sa +sa and i(s" -sa), 
which are both divergence-free, are orthogonal to j" and null only when the latter is null 
(that is, when u A  is proportional to v A )  but space-like otherwise. 
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Since the Dirac bi-spinor I) defines two null directions 

UAEA and U A C A  

respectively, Dirac fields can be classified as follows. 

1207 

(11) 

Definition. A Dirac field 

will be said to be of type I if uA is not proportional to U A  so that the null directions (1 1) 
do not coincide, and of type I1 if U A  is proportional to U A  and the null directions (11) 
coincide. 

As mentioned in the introduction, only Dirac fields of type I1 will be considered in 
this paper. Before discussing them, however, we shall first recast our formalism into 
Newman-Penrose notation (Newman and Unti 1962, Newman and Penrose 1962, 
Flaherty 1976) (hereafter denoted as NP). 

3. Energy-momentum tensor and Dirac equations in the NP form 

The quasi-orthonormal NP tetrad is defined in terms of bpi, as follows: 

(and FE" = ueAAiA6A) where the spinor dyad {oA, iA) is normalised so that 

€ A B  = OAiB - OBi.4. (13) 

In terms of the standard representation of Pauli matrices 

O A  = a t  i A  = a?, (14) 

(15) 

the components of the Dirac bi-spinor now become 
A .A A .A 

U0 = UAO u1=uAI 00 = U A O  U 1  = U A f  

Defining the NP spin coefficients by 
A A B  A .A .B  

A . A  B A A B  

a = i  0 0 VAAiB P = o  1 I VAAOB 

y = i  I o VAaiB E = O  o i VAAOB 

p = o  i i VAAiB T = O  o i VAaiB 

p = i  o o VAAOB r = i  i o VAAOB 

K = O  0 0 VAAoB v = i  i i VAaiB 

(+=o f 0 VAAoB A = i  o i VAAiB 

A A B  A A B  

A A B  A A  B 

A A B  A A B  

A . A  B A A B  
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q522 = 2iK[ulAG1 - zilAul + ClAu1-  ulAC1 + v(uoii1- u0C1)- C(iiou1- Caul) 

+ ( i ; - Y ) ( u l ~ l - u l C l ) l .  

Because of the Dirac equations we also have 

c # J ~ ~  = -3A+iK[ulDzil-zilDu1 +uoAko-zioAuo+t71Du~ -vlDCl+doAuo-u~Afio 

+(y- i ; ) (uoao-uof io)+(I+ rr)(uon,-uoC1)-(7.+ji)(aOu1-t7OU1) 

+(Q - E ) ( u 1 z i 1  - U l f i l ) ] ,  (24) 

or a similar expression with the S operators which we need not write out here. 

4. Dirac fields of type I1 

After the above preliminaries, we are now in a position to discuss the structure of Dirac 
fields. For a field of type 11, that is, when u,A is proportional to uA, we can choose 1" to 
be parallel to the null vector u A a A  (or u A C A )  and o A  to be, equivalently, proportional to 
u A .  Then, for some complex functions f and g of the coordinates 

uA = foA and V A  = goA 

or 

U0 = uo = 0 U1 =f and 01 = g, 

Df = (P - Elf  

Dg = ( P  -E)g 

the Dirac equations (18) now acquire the simplified form 

Sf = (7 - p) f+  (i/JzL)g 

Sg = (7 - p)g  + ( i / JL) f .  

It follows that 

f = h g  

D h = O  and g8h = (i/&L)g( 1 - h i )  for f, g # 0. 

where 

The vectors j" and sa become 

j "  = ( f r+  gg)P and sa = fgl" (27) 
so that j" is null since I" is null. It follows that we can expect a Dirac field of type I1 to 
exhibit many properties similar to the neutrino fields (Wainwright 1971). The 
coefficients q5m of (23) now simplify, with the help of the Dirac equation (26), to 

401 = iKK (&? -fT) 
411 = iK(P - P ) ( g E  -fT) 
412 = i ~ [ f ~ ~ - g ~ g + ( 2 . r - ~ ) ( g g - f f ) ]  

4 2 2  = 2iKLfAf-Tf + EAg -gAE + (Y - N g g  -fT)l 

4 0 2  = 2iKdgE -fT) 

(28) 

and, of course, 

400 = A = 0. 
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The energy-momentum tensor takes the form 

4KTUp = -2401ni~riip) - 2410n(,mp) + 402f i ,mp + 420m,mp 

+dll(4l~,np)-g,p)-2#~2~~,fip~-24211~,mp)+422~a~p. (29) 

It is now advantageous to introduce subclasses of the type-I1 fields. 

Definition. A Dirac field of type I1 will be said to be 
(i) generic (11~)  if fT# gg, 

(ii) degenerate (IID) if fT= gg (so that f = eieg with DB = 68 = 0) and 
(iii) totally degenerate (IITD) iff = g. 

A IIm field can be regarded as a 'ghost' field since, in this case, the energy-momentum 
tensor vanishes identically. 

We must now digress to note the tetrad transformations allowed by the choice of a 
fixed I " .  In fact, we have the tetrad freedom of null rotation about I " ,  boosts in the 1"-n" 
plane and rotations in the m"-fi" plane. These may be written (Flaherty 1976) as 

I" + i" = I" 

and 

where A and 4 are real and a is a complex function of coordinates. In terms of the dyad 
oA, iA these transformations are 

and 

with A > 0. We can note also that under the above tetrad freedom our classification of 
the type-I1 fields (IIG, IID and 1 1 ~ ~ )  is invariant. 

Dirac equations must be compatible with the NP commutators or, in other words, 
satisfy integrability conditions. Using the equations (Flaherty 1976) 

8p = & + p ( &  +p)-(T(3Ct - p ) + ( P  -6). + ( p  - F ) K  -$ I  + @ o l  

D 7 = A K  (.+ ??)p t (?+ tr)C+ ( E  -c)'7-(37 f y ) K  + $1 
= 6 E  + (a + T)(T + (6 -?)p - ( p  + Y ) K  -(& - + ) E  +$I,  

401 



Geometric properties of Dirac fields. I 1211 

the commutator 

SD -DS = (a + p - +)D + K A  - &- ( p  + E  -<)a, 
we obtain the following conditions on f and g: 

h(~f)-d((~f)=f[K(2y+.Y-CZj+(T(p---22a)-$l]+(i/JZL)pg 

A ( K g )  - d((Tg) = g[K(2y 
(34) 

-i) +(T(p---22a) -$I]+ (i/hL)pf: 

It follows that if the null congruence 1" is geodesic and shear-free, 

K = ( T = O ,  

then 

= ( i /hL)pg and g+l= ( i / hL)p f :  

Since L is finite and f and g non-zero, we can have either 

(i) p = 0 when also = 0 

(ii) 
or 

p # 0 when fT= gg (11~) .  

We can state this result as follows. 

Theorem 1. For a type-I1 Dirac field in which the null direction defined by the field is 

( a )  the null direction is expansion- and twist-free 
geodesic and shear-free either 

($1 = 0, p = 0) 

or 

In particular, case ( a )  holds for test solutions in a type-D vacuum space-time in which 1" 
coincides with one of the null directions of the Weyl tensor, and we have the following 
corollary. 

( b )  the null direction has expansion, twist or both and the field is IIG. 

Corollary 1. The only type-D vacuum space-times which admit test Dirac fields of 
type I1 in which the null direction of the field is geodesic and shear-free are the 'B' and 
the 'rotating B' (Kinnersley 1969). We may note that this corollary is considerably 
more restrictive than the corresponding result for test solutions of the neutrino fields. In 
the latter case, all type-D vacuum space-times admit solutions in which the null 
congruence of the field is necessarily geodesic and shear-free (Flaherty 1976, pp 
242-50). 

5. Conditions on the energy-momentum tensor 

We can develop a connection between the various type-I1 Dirac fields and certain 
conditions which can be satisfied by the energy-momentum tensor of the field. Because 
of the similarity of the type-I1 Dirac field, at least in the IIG case, to a neutrino field our 
discussion will closely follow that of Wainwright (1971; see also the review article by 
Kuchowicz 1974). 
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The energy density of a field with respect to an observer is defined by 

E ( u )  = Tapu"up, (35) 
the velocity vector u p  being future-directed (uaua = 1). Similarly, the energy flow 
vector is given by 

Qa(u)  = T ~ , s u @ .  (36)  

Definition. A field is said to satisfy 
(i) the strong energy condition if E ( u )  > 0 and Q, ( U )  is a future-directed, time-like 

or null vector, for all observers at each event on an observer's world line for which 

(ii) the weak energy condition of type El  if E ( u )  # 0, for all observers at each event 
on an observer's world line for which Taa # 0 and 

(iii) the weak energy condition of type E2 if Q,(u)  is a future-directed, time-like or 
null vector, for all observers at each event on an observer's world line for which TUB # 0. 

Let us consider IID fields for which 

Tap # 0 ,  

f = eieg 8 real. 

With the help of NP commutators we easily get 

D(A8) = - ( E  + ; ) A 8  

K A 8  = 0 

S ( A 8 )  = (7 - (Y - p ) A 8  

(0 -p)A8 = 0. 
(37) 

Hence, either 

A8 = 0,  (38) 
and (choosing the coordinates and the tetrad in a suitable way) 8 is a constant, or A 8  # 0, 
and therefore 

K = O  p - p = o .  (39) 
In this case I" is geodesic and twist-free. 

A = & o = O  

4 2 2  = 4KgEAB. 

For a IID Dirac field we have (according to equation (28)) 

401 = 402  = 411 = 412 = 0 
and 

Hence the energy-momentum tensor becomes 

4KT4  = 4221ali3 = 4KggA81,lS. 

Since the velocity of an arbitrary observer has the form 

u p  =pl" +qn" +smp + f f i " ,  

pq -sF = 5, 

Qa ( U )  = q422L. 

with 
1 

it follows that 

We can summarise these results in the following theorem. 
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Theorem 2. A Dirac field of type IID is either a ghost field or it is of energy class E2. 

( a )  the energy flow vector is null and parallel to the direction of the field for all 

(6) the direction defined by the field is geodesic and twist-free and 
( c )  there exists a null tetrad in which the energy-momentum tensor assumes the 

In the latter case, 

observers, 

form 
To6 = 4lalo 

for some function 4 of the coordinates and, if 4 > 0, satisfies the strong energy 
condition. 

Thus the non-ghost Dirac fields of type IID appear as null fields (Wainwright 1971, 
Penrose 1965, 1969) except that they have necessarily a non-zero rest mass. This, of 
course, is an important distinction. 

Let us now turn our attention to Dirac fields of type IIG for which 

fT + gg. 

With the help of Theorem 1, part ( a ) ,  we can announce the following theorems. 

Theorem 3. For a Dirac field of type IIG, 
( a )  the principal null congruence is geodesic and its shear u and twist w = $(p - p )  

satisfy 
U@ - 4w2 C 0 

if the field is of energy class Et, 

the energy-momentum tensor assumes the form 
(6) the field is of class El if and only if there exists a null tetrad with respect to which 

4 Tap = 4lalo - 2(ff- gg)w (4/(an6, - gap + 2i(ff- gg)(@m,mp - U*.&) 
where 

4 = 2iLfAT-fAf + gAg - gAS + (Y  - N g g  -fT)l 
and 

cr6-4w2SO 0, 
and 

( c )  the energy density satisfies 

sgn ~ ( u )  = sgn[w(gg --ff>I, 

w z o  and lE(u)l 4 l (gg - f f )w I .  

providing that 

Theorem 4. 
( a )  A Dirac field of type IIG is of class E2 if and only if its principal null congruence is 

( b )  if and only if there exists a null tetrad with respect to which the energy- 
geodesic and shear-free: or 

momentum tensor takes the form 

To6 = d a / B  

with 4 as in theorem 3, part (6). 
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Theorems 3 and 4 can be proved from (28) and (29) in exactly the same way as in 
Wainwright’s (1971) theorems 3.2, 3.3, 3.4 and 3.5, together with our theorem 1, part 

We note again that a IIG, E2 field is also twist- and expansion-free, and satisfies the 
( a ) .  

strong energy condition if and only if q5 > 0. 

6. Concluding remarks 

Our results seem to indicate that Dirac fields of type I1 represent neutrinos with a 
non-zero rest mass. Now, the energy-momentum tensor of a null electromagnetic field 
is of the form 

Tap = 4lale 
where #I > 0 and I ,  is tangent to the repeated null directions of the field. If the 
electromagnetic field is source-free, then 1, is necessarily geodesic and shear-free 
(Robinson-Mariot theorem, see Flaherty (1976) or Robinson (1961). 

Hence a gravitational field with a null electromagnetic field of twist-free and 
geodesic null congruence as source can be regarded also as a gravitational field arising 
from a non-ghost Dirac field of type IID satisfying the strong energy condition. This 
depends, of course, on the Dirac equations being non-trivially satisfied. 

Similarly, from theorem 4, part (b ) ,  it follows that Dirac fields of type IIG and energy 
class Ez are null fields. Hence all non-ghost Dirac fields of type I1 and energy class Ez 
are null fields. Furthermore, from theorem 3, part ( a ) ,  and theorem 4, part (b ) ,  
algebraically special gravitational fields, for which the source is a null, source-free 
electromagnetic field with twist- and expansion-free null congruence, can be regarded 
as having as source a Dirac field of type IIG which satisfies the strong condition of 
energy. 
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